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We present exact analytic solutions for discrete breathers in essentially nonlinear oscillatory chains, belong-
ing to both of the most common universality classes �Klein-Gordon and Fermi-Pasta-Ulam�. The exact solu-
tions can be obtained due to use of vibroimpact potentials, combining extreme nonlinearity with the possibility
of description in terms of a forced linear model under conditions of self-consistency. A crossover between the
cases of high and low energies can be studied directly. The solutions obtained may be used as a high-energy
limit for models with other realistic potentials, as well as benchmarks for the testing of approximate approaches
in the theory of discrete breathers.
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I. INTRODUCTION

Discrete breathers �DB�, or spatially localized time-
periodic solutions in Hamiltonian classic nonlinear lattices,
were discovered in the late 1960s and have attracted a lot of
attention �1–5�. These solutions appear both in Klein-Gordon
�KG� lattices with nonlinear on-site potential �6� and in
Fermi-Pasta-Ulam �FPU� lattices with nonlinear interaction
between the particles �7,8�. For both types of models men-
tioned above, the DB have well-developed theory �3� and a
wide range of applications, including Josephson contacts, na-
nomechanical systems, Bose-Einstein condensates, carbon
nanotubes, etc. �3�.

Despite all these developments, to the best of our knowl-
edge there exist only two nontrivial models that allow exact
computation of the DB. The first one is the well-known in-
tegrable Ablowitz-Ladik model �9�, one of the discrete coun-
terparts of the nonlinear Schrödinger equation. The other
model was suggested by Ovchinnikov and Flach �10�. This
model explores the DB in the lattices with homogeneous
potentials. It should be mentioned that neither of these mod-
els belongs to the most common KG or FPU type.

The goal of this paper is to construct the exact solutions
for discrete breathers in one-dimensional chains with a non-
linearity of impact type. The impact interaction has the stron-
gest nonlinearity possible—its potential corresponds to a ver-
tical wall. The models with impacts are widely used for
simulation of various physical phenomena. Some examples
are various types of billiards �11,12�, the model of a bounc-
ing ball leading to the celebrated standard map in the theory
of chaos �13,14� or models involving colliding particles,
which are explored in connection with fundamentals of heat
conduction �15–17�. Of course, this list is far from being
exhaustive.

The models considered in this paper also involve elastic
collisions, but the latter are combined with common linear
elastic interactions. Such combined models are widely stud-
ied in some branches of theory of vibrations and mechanical

engineering �18,19�, but have only limited use in relation to
physical phenomena �although some applications do exist;
see, e.g., �20��.

II. DESCRIPTION OF THE MODEL AND ANALYTIC
TREATMENT

A. System of Klein-Gordon (KG) type

Let us consider a one-dimensional linear chain with every
particle placed between on-site impact barriers. The equa-
tions of motion are

ün + c�2un − un−1 − un+1� = 0, �un� � � , �1�

n = 0, � 1, � 2, . . . .

Scalar un denotes the displacement of the nth particle, the
mass of each particle is adopted to be unit, and c is the
rigidity of the linear coupling. The distance between the bar-
riers at each site is equal to 2�. An interaction of every
particle with the barrier as the displacement achieves �� is
described as a purely elastic impact. This means that if the
impact occurs at time t0, then the following condition holds
for all n:

lim
t→t0−0

u̇n = − � lim
t→t0+0

u̇n�un=��. �2�

System �1� can be considered as particular case of discrete
Klein-Gordon lattices. It should be stressed that system �1� is
homogeneous, i.e., the impact barriers exist at every site.
System �1� is obviously nonintegrable; still, we are going to
demonstrate that due to its simplicity, it is possible to obtain
exact solutions for the DB.

Let us look for the solution of Eqs. �1� and �2� with only
one particle subject to periodic impacts with the barriers.
Without loss of generality, we suggest that it is particle n
=0. Such impacts are equivalent to the action of periodic
external � pulses on this particle. In other terms, for particu-
lar solutions we are seeking for system �1� and �2�, they are
equivalent to the following system of equations:
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ün + c�2un − un−1 − un+1� = 2p�n0 �
k=−�

�

���t − T/4 + kT�

− ��t + T/4 + kT�� , �3�

where T is the period of the impacts, 2p is the unknown
change of the particle moment in the course of the impact,
and �ij is the Kronecker symbol.

At this point, the crucial advantage of the vibroimpact
model reveals itself—Eq. �3� is linear and may be solved
exactly. This possibility of simplification was used for com-
puting the nonlinear normal modes in vibrating systems with
impacts �21�. Once the solution is obtained, one should
check whether it satisfies the following conditions of self-
consistence:

�a� Maximal displacement of the particle n=0 is equal to
�.

�b� Maximal displacements of all particles with n�0 are
less than � �no other impacts occur�.

If both of these conditions are satisfied, then the solution
of forced linear equation �3� is a genuine solution of initial
system �1�.

It is convenient to rewrite the right-hand side of Eq. �3� as
Fourier series �in the sense of distributions�,

ün + c�2un − un−1 − un+1� = �n0
4p�

�
�
j=1

�

�− 1� j sin��2j − 1��t� .

�4�

Here �=2� /T. Thus, the conditions of the impact are
equivalent to local forcing of the chain with multiple fre-
quencies. The dispersion relation for traveling waves in the
linear chain is well known,

�2 = 2c�1 − cos q� , �5�

where � is the wave frequency and q is the wave number.
Consequently, the frequency spectrum of any periodic local-

ized solution must be situated in the attenuation zone, above
the maximum frequency

�max = 2�c . �6�

The forcing terms in Eq. �4� have frequencies �, 3�, 5�,
etc. Consequently, the forced solution of Eq. �4� will be lo-
calized if

� 	 �max. �7�

Stationary solution of Eq. �4� may be easily found with
the help of Z transform. It can be written down in the fol-
lowing form:

un�t� =
�− 1�np�

�c
�
j=1

�

�− 1� j



�2��2j − 1�2 − 1 − 2��2�2j − 1�4 − ��2j − 1�2��n�

��2�2j − 1�4 − ��2j − 1�2


sin��2j − 1��t� ,

� =
�2

4c
. �8�

Maximum displacement of the particle n=0 should be
equal to the impact threshold �. It is achieved when t=T /4
+kT /2. In other terms,

�u0�T/4�� =
p�

�c
�
j=1

�
1

��2�2j − 1�4 − ��2j − 1�2
= � . �9�

From Eq. �9�, one obtains the value of the unknown co-
efficient p. With account of Eq. �9�, Eq. �8� is reduced to the
following form:

un�t� = �− 1�n�

�
j=1

�

�− 1� j �2��2j − 1�2 − 1 − 2��2�2j − 1�4 − ��2j − 1�2��n�

��2�2j − 1�4 − ��2j − 1�2
sin��2j − 1��t�

�
j=1

�
1

��2�2j − 1�4 − ��2j − 1�2

. �10�

Expression �10� is the exact solution for the DB in system �1� and �2�. First of all, it should be mentioned that the series
converge both in the numerator and in the denominator. In the numerator, the coefficients for Fourier series decay like
�2j−1�−�n+2� for large j; in the same limit, the series in the denominator behaves like ��2j−1�−2.

Maximum displacement of the nth particle is expressed as

�un�T/4�� = �

�
j=1

�
�2��2j − 1�2 − 1 − 2��2�2j − 1�4 − ��2j − 1�2��n�

��2�2j − 1�4 − ��2j − 1�2

�
j=1

�
1

��2�2j − 1�4 − ��2j − 1�2

. �11�

It is easy to demonstrate that the function
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F�x� = 2x − 1 − 2�x2 − x �12�

for x	1 obeys 1	F�x�	0 and decreases monotonously when x grows. Thus, the following inequalities hold:

�un�T/4�� = �

�
j=1

�
�2��2j − 1�2 − 1 − 2��2�2j − 1�4 − ��2j − 1�2��n�

��2�2j − 1�4 − ��2j − 1�2

�
j=1

�
1

��2�2j − 1�4 − ��2j − 1�2

� �2� − 1 − 2��2 − ���n�� = �2� − 1 − 2��2 − ���n��u0�T/4�� .

�13�

If �	1 �i.e., the basic frequency of the impacts � is in
the attenuation zone�, then the solution �10� is exponentially
localized, as one should expect for the DB. Besides, for any
n the maximum displacement of the particles is less than �,
i.e., they are not engaged in the impacts. This observation
concludes the proof of consistency for solution �10�.

It seems not possible to compute closed expressions for
series in expression �10�. Still, the series converge fast
enough, so no special computation difficulties are encoun-
tered.

In order to illustrate the solution �10�, we plot the breather
profile—maximum displacement for each particle—for �
=3 �basic frequency far from the boundary of the attenuation
zone, Fig. 1�a�� and �=1.05 �basic frequency close to the
boundary of the attenuation zone, Fig. 1�b��. � is adopted to
be unity. From obvious symmetry considerations, it is
enough to plot only the particles with n0.

One can see that, as expected, the breather with basic
frequency far from the boundary of the propagation zone is
strongly localized, whereas the DB relatively close to this
boundary is much wider. In order to assess the type of mo-
tion exhibited by different particles, it is instructive to plot
the time dependence of displacement for n=0 and 1 for the
same values of � and � as in Figs. 2�a� and 2�b�.

One can see that for even a moderately high basic fre-
quency of the DB �in the case �=3, the frequency is only
1.73 of the gap value�, the displacement of the particle n
=0 resembles the triangular wave and its shape is very dif-
ferent from n=1. Quite obviously, the continuum approxima-
tion would be completely unsuitable for this case. Alterna-
tively, close to the gap boundary, for �=1.05 the ‘‘impact’’
part reveals itself only near the maximum.

In this connection, let us investigate the limit cases of
solution �10�. For the limit of high frequencies �→�, one
obtains

un�t� = �0, n � 0

8�

�2 �
j=1

�

�− 1� j sin��2j − 1��t�
�2j − 1�2 , n = 0.	 �14�

For n=0, sum �14� indeed describes a triangle wave with
frequency �. This situation exactly corresponds to the “anti-
integrability” limit well known in the theory of the DB �22�,
where the oscillations are concentrated on a single particle.

The other limit, �→1, physically corresponds to the close
vicinity of the boundary of the attenuation zone. Let us con-
sider the case

� = 1 + �, 0 � � � 1. �15�

For this case,
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FIG. 1. Profile of the discrete breather �model of KG type�.
Maximum amplitudes of the particles are plotted: �a� �=3, �b� �
=1.05.
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1
��2�2j − 1�4 − ��2j − 1�2

= �
1
��

+ O���� , j = 1

1

2�2j − 1��j2 − j
+ O��� , j 	 1.	 �16�

From estimation �16� it is clear that in the lowest order of
approximation, only the term with j=1 should be kept in all
sums in Eq. �10�. Consequently, the approximate solution
will read

un�t� = − �− 1�n��1 − 2����n� sin �t + O����, � → 0.

�17�

Solutions of this type are obtained when the DB is rather
widely searched as a solution of the continuous modulated
system �23�.

B. System of Fermi-Pasta-Ulam (FPU) type

The method for obtaining the exact DB solutions de-
scribed above can be extended for a model with gradient
nonlinearity without the on-site potential chain of the FPU
type. If the potential of interaction between the neighboring
particles is V�un−un−1�, then the equations of motion will be

ün +
�V�un − un−1�

�un
+

�V�un+1 − un�
�un

= 0. �18�

In the symmetric vibroimpact model, the impacts occur
when the displacement between the neighboring particles
achieves a certain limit value �from above and from below�.
Thus, the potential V�x� is defined as

V�x� =
1

2
cx2, �x� � D . �19�

When the relative displacement achieves its limit value D
at time t0, the impact �actually, the pair of impacts� occurs
and the relative velocity changes its sign. Similarly to Eq.
�2�, one can formulate this condition as

lim
t→t0−0

�u̇n − u̇n−1� = − � lim
t→t0+0

�u̇n − u̇n−1��un−un−1=�D, �20�

n = 0, � 1, � 2 . . . .

The simplest situation, which corresponds to the DB, will
occur if only one interparticle bond will have elongations
large enough to cause impacts. Without the loss of generality,
let us suppose that this bond is one between the particles n
=0 and 1. The action of impacts may be substituted by the
action of two series of � pulses, acting in opposite directions
at the particles 0 and 1. Consequently, this particular solution
will satisfy the following equations of the motion:

ün + c�2un − un−1 − un+1� = 2p��n0 − �n1� �
k=−�

�

���t − T/4 + kT�

− ��t + T/4 + kT�� . �21�

The left-hand side of Eq. �21� is linear and so there is no
need to solve it once more—the solution can be obtained by
appropriate superposition. Based on Eq. �8�, the solution will
be

un�t� = Q�n,t� − Q�n − 1,t� ,

Q�n,t� =
�− 1�np�

�c
�
j=1

�

�− 1� j



�2��2j − 1�2 − 1 − 2��2�2j − 1�4 − ��2j − 1�2��n�

��2�2j − 1�4 − ��2j − 1�2


sin��2j − 1��t� . �22�

In order to determine the unknown coefficient p, one
should normalize solution �22� according to the impact con-
dition �20�. By denoting the relative displacement,

wn = un+1 − un, �23�

we get from Eq. �22�,

2 p t

T

1 2 3 4 5 6

n
t

K 0 . 8

K 0 . 6

K 0 . 4

K 0 . 2

0

0 . 2

0 . 4

0 . 6

0 . 8

2 p t

T

1 2 3 4 5 6

n
t

K 1 . 0

K 0 . 8

K 0 . 6

K 0 . 4

K 0 . 2

0

0 . 2

0 . 4

0 . 6

0 . 8

(a)

(b)

FIG. 2. �Color online� Time history of the particles in KG-type
model: thin line, u0�t�; thick line, u1�t�; �a� �=3, �b� �=1.05.
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w0�t� = u1�t� − u0�t� = Q�− 1,t� + Q�1,t� − 2Q�0,t�

= −
4p�

�c
�
j=1

�

�− 1� j



���2j − 1�2 − ��2�2j − 1�4 − ��2j − 1�2�

��2�2j − 1�4 − ��2j − 1�2


sin��2j − 1��t� . �24�

The normalization condition will then read

�w0�T/4�� =
4p�

�c
�
j=1

�
���2j − 1�2 − ��2�2j − 1�4 − ��2j − 1�2�

��2�2j − 1�4 − ��2j − 1�2

= D . �25�

Finally, the solution for the DB in the FPU-type vibroim-
pact chain will be

un�t� = Z�n,t� − Z�n − 1,t� ,

Z�n,t� =

�− 1�nD�
j=1

�

�− 1� j �2��2j − 1�2 − 1 − 2��2�2j − 1�4 − ��2j − 1�2��n�

��2�2j − 1�4 − ��2j − 1�2
sin��2j − 1��t�

4�
j=1

�
���2j − 1�2 − ��2�2j − 1�4 − ��2j − 1�2�

��2�2j − 1�4 − ��2j − 1�2

. �26�

Convergence of all series is easily established by consid-
erations literally similar to those presented above for solution
�10�. The only additional element for proof of consistency is
the fact that no other bond besides w0 is engaged in the
impacts. According to Eq. �26�, the deformation of the nth
bond is expressed as

wn�t� = Z�n + 1,t� + Z�n − 1,t� − 2Z�n,t� . �27�

The function Z�n , t� has opposite signs for the neighboring
particles; consequently, one obtains

�wn�t�� = �Z�n + 1,t� + Z�n − 1,t� − 2Z�n,t��

= �Z�n + 1,t�� + �Z�n − 1,t�� + 2�Z�n,t��

� �Z�n + 1,T/4�� + �Z�n − 1,T/4�� + 2�Z�n,T/4�� .
�28�

However,

D = max�w0�t�� = �w0�T/4�� = �Z�− 1,T/4�� + �Z�1,T/4��

+ 2�Z�0,T/4�� . �29�

By virtue of Eqs. �13� and �26�, quite obviously, for any
n�0 and �	1 the sum of terms on the right-hand side of
Eq. �29� is strictly larger than the last sum in Eq. �28�. There-
fore,

�wn� � D, n � 0, � 	 1. �30�

Inequality �30� proves the consistency of solution �26� for
the DB in the FPU-type model. Interestingly, the consistency
of this solution follows from the consistency of solution �10�
for the DB in the KG-type chain. Plots for maximum dis-
placements un�T /4� for two different values of � according
to solution �26� are presented in Figs. 3�a� and 3�b�.

III. DISCUSSION

The solutions presented above can be significant as the
benchmarks suitable for testing the approximations in the
theory of the DB. Besides, the impact interaction is the high-
energy limit for common models of the nonlinear lattices,
such as the Toda lattice �24� or systems with Lennard-Jones
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FIG. 3. Profile of the discrete breather �model of FPU type�.
Maximum amplitudes of the particles are plotted: �a� �=3, �b� �
=1.05.
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or Morse potentials. The role of the hard-point potentials as
limit cases for more realistic potentials was outlined in �25�.
Papers �26,27� discuss the shape and stability of the DBs in
FPU-type lattices with strongly nonlinear nearest-neighbor
interaction allowing the colliding-particles limit. The discrete
breathers in the systems of this type in high-energy limits
will be similar to the DBs derived in this paper.

The stability of solution �10� was verified by means of
direct numeric simulations with parameters used for genera-
tion of Figs. 1�a� and 1�b�. No detectable instability was
revealed within more than 10 000 periods of oscillations in
both cases. Such a simulation does not prove the stability
rigorously. In order to analyze the stability in a rigorous
manner, one should check the spectral properties of the linear
dynamics around the DB. Such a problem seems to be rather
complicated, due to both the singular nature of the problem
and the infinite number of harmonics involved in the exact
solution. Such a treatment is beyond the scope of the current
work. From the numeric simulation, at least one can suggest

that solution �10� is stable, as is the case for the DBs in
similar systems �2,3,27�.

To conclude, it is possible to find exact analytic solutions
for the discrete breathers in both the nonintegrable chains of
Klein-Gordon and Fermi-Pasta-Ulam types with vibroimpact
potentials. These solutions are possible since the vibroimpact
interaction can be rigorously reduced to the action of peri-
odic external force on the linear lattice. Thus, these solutions
can be easily generalized also for higher dimensions of the
lattices, provided that the linear lattice is combined with ap-
propriate impact interaction. Moreover, the method described
above can allow for constructing more complicated solu-
tions, such as coupled DBs or DBs with internal oscillating
modes.
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